1130.Minimum-Cost-Tree-From-Leaf-Values

1130. Minimum Cost Tree From Leaf Values

้ข˜็›ฎๅœฐๅ€

https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/

้ข˜็›ฎๆ่ฟฐ

Given an array arr of positive integers, consider all binary trees such that:

Each node has either 0 or 2 children;
The values of arr correspond to the values of each leaf in an in-order traversal of the tree.  (Recall that a node is a leaf if and only if it has 0 children.)
The value of each non-leaf node is equal to the product of the largest leaf value in its left and right subtree respectively.
Among all possible binary trees considered, return the smallest possible sum of the values of each non-leaf node.  It is guaranteed this sum fits into a 32-bit integer.

Example 1:
Input: arr = [6,2,4]
Output: 32
Explanation:
There are two possible trees.  The first has non-leaf node sum 36, and the second has non-leaf node sum 32.

    24            24
   /  \          /  \
  12   4        6    8
 /  \               / \
6    2             2   4


Constraints:
2 <= arr.length <= 40
1 <= arr[i] <= 15
It is guaranteed that the answer fits into a 32-bit signed integer (ie. it is less than 2^31).

ไปฃ็ 

Approach #1 ๅ•่ฐƒ้€’ๅ‡ๆ ˆ

่€ƒ่™‘ไฝฟ็”จไธ€ไธชๅ•่ฐƒ้€’ๅ‡ๆ ˆๆฅๅญ˜ๅ‚จๆ•ฐ็ป„ๅ…ƒ็ด ๏ผŒๅฆ‚ๆžœๅฝ“ๅ‰ๅ…ƒ็ด ๅฐไบŽ็ญ‰ไบŽๆ ˆ้กถๅ…ƒ็ด ็›ดๆŽฅๅ…ฅๆ ˆ๏ผ›ๅฆๅˆ™๏ผŒ่ฏดๆ˜Žๅฝ“ๅ‰ๆ ˆ้กถๅ…ƒ็ด ๆ˜ฏไธ€ไธชๅฑ€้ƒจๆœ€ๅฐๅ€ผ๏ผŒๆˆ‘ไปฌ็”จ่ฟ™ไธชๅฑ€้ƒจๆœ€ๅฐๅ€ผ็š„ไธค็ซฏ่พƒๅฐไธŽๆ ˆ้กถๅ…ƒ็ด ็›ธไน˜๏ผŒๅŒๆ—ถๅฐ†ๆ ˆ้กถๅ…ƒ็ด ๅ‡บๆ ˆ๏ผŒ้‡ๅคไธŠ่ฟฐๆ“ไฝœ๏ผŒ็›ด่‡ณๆ ˆ้กถๅ…ƒ็ด ไธๆ˜ฏๅฑ€้ƒจๆœ€ๅฐๅ€ผ๏ผŒๅ†ๅฐ†ๅฝ“ๅ‰ๅ…ƒ็ด ๅ…ฅๆ ˆใ€‚ๅค„็†ๅฎŒๆ•ดไธชๆ•ฐ็ป„ๅŽ๏ผŒๅฆ‚ๆžœๆ ˆไธญ่ฟ˜ๆœ‰ๅคš็š„ๅ…ƒ็ด ๏ผŒๆˆ‘ไปฌไปŽๆ ˆ้กถไพๆฌกๅพ€ไธ‹ไน˜ๅŠ ๅ…ฅ็ญ”ๆกˆๅณๅฏ

class Solution {
  public int mctFromLeafValues(int[] arr) {
        int res = 0;
    Stack<Integer> stack = new Stack();
    stack.push(Integer.MAX_VALUE);
    for (int a : arr) {
      while (stack.peek() <= a) {
        int mid = stack.pop();
        res += mid * Math.min(stack.peek(), a);
      }
      stack,push(a);
    }

    while (stack.size() > 2) {
      res += stack.pop() * stack.peek();
    }

    return res;
  }
}

Approach #2 Dynamic Programming

dp[i][j] = answer of build a tree from a[i] ~ a[j] dp[i][j] = min{dp[i][k] + dp[k+1][j] + max(a[i~k]) * max(a[k+1~j])} i <= k < j

class Solution {
  public int mctFromLeafValues(int[] arr) {
    int n = arr.size();
    int[][] dp = new int[n][n];
    int[][] m = new int[n][n];
    for (int i = 0; i < n; i++) {
      m[i][i] = arr[i];
      for (int j = i + 1; j < n; j++) {
        m[i][j] = Math.max(m[i][j - 1], arr[j]);
      }
    }
    for (int l = 2; l <= n; i++) {
      for (int i = 0; i + l <= n; i++) {
        int j = i + l - 1;
        dp[i][j] = Integer.MAX_VALUE;
        for (int k = i; k < j; k++) {
          dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k + 1][j] + m[i][k] * m[k + 1][j]); 
        }
      }
    }
    return dp[0][n - 1];
  }
}

Last updated