Given a matrix, and a target, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.
Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.
Example 1:
Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Note:
1 <= matrix.length <= 300
1 <= matrix[0].length <= 300
-1000 <= matrix[i] <= 1000
-10^8 <= target <= 10^8
代码
Approach #1 Horizontal 1D Prefix Sum
Time: O(R^2 * C) && Space: O(RC)
classSolution {publicintnumSubmatrixSumTarget(int[][] matrix,int target) {int r =matrix.length;int c = matrix[0].length;int[][] ps =newint[r +1][c +1];for (int i =1; i < r +1; i++) {for (int j =1; j < c +1; j++) { ps[i][j] = ps[i -1][j] + ps[i][j -1] -ps[i -1][j -1] + matrix[i -1][j -1]; } }int count =0, currSum;Map<Integer,Integer> h =newHashMap();for (int r1 =1; r1 < r +1; r1++) {for (int r2 = r1; r2 < r +1; r2++) {h.clear();h.put(0,1);for (int col =1; col < c +1; col++) { currSum = ps[r2][col] - ps[r1 -1][col]; count +=h.getOrDefault(currSum - target,0);h.put(currSum,h.getOrDefault(currSum,0) +1); } } }return count; }}