Given an array where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example:
Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
代码
Approach #1 Preorder Traversal: Always Choose Left Middle Node as a Root
int p = (left + right) / 2;
root = p
root.left = [left, m-1]
root.right = [m+1, right]
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */classSolution {publicTreeNodesortedArrayToBST(int[] nums) {returnhelper(nums,0,nums.length-1); }publicTreeNodehelper(int[] nums,int left,int right) {if (left > right) returnnull;// always choose left middle node as a rootint p = (left + right) /2;// inorder traversal: left -> node -> rightTreeNode root =newTreeNode(nums[p]);root.left=helper(left, p -1);root.right=helper(p +1, right);return root; }}
Approach #2 Preorder Traversel: Always Choose Right Middle Node as a Root
classSolution {publicTreeNodesortedArrayToBST(int[] nums) {this.nums= nums;returnhelper(0,nums.length-1); }publicTreeNodehelper(int left,int right) {if (left > right) returnnull;// always choose right middle node as a rootint p = (left + right) /2;if ((left + right) %2==1) ++p;// inorder traversal: left -> node -> rightTreeNode root =newTreeNode(nums[p]);root.left=helper(left, p -1);root.right=helper(p +1, right);return root; }}