Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
代码
Approach #1 Greedy
Time complexity : O(N) since it's one pass along the array
Space complexity : O(1), since it's a constant space solution
publicclassSolution {publicintmaxSubArray(ArrayList<Integer> nums) {if (nums ==null||nums.isEmpty()) return-1;int sum =0;int maxSum =Integer.MIN_VALUE;for (int num : nums) { sum =Math.max(sum,0); sum += num;// sum = Math.max(num, sum + num); maxSum =Math.max(maxSum, sum); }return maxSum; }}
Approach #2 Max = Sum - minSum
publicclassSolution{publicintmaxSubArray(ArrayList<Integer> nums){if (nums ==null||nums.isEmpty()) return-1;int sum =0;int minSum =0;int maxSub =Integer.MIN_VALUE;for (int num : nums) { minSum =Math.min(minSum, sum); sum += num; maxSub =Math.max(maxSub, sum - minSum); }return maxSub; }}