Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
class Solution {
public int[] countBits(int num) {
int res = new int[num + 1];
int pow2 = 1, before = 1;
for (int i = 1; i <= num; i++) {
if (i == pow2) {
res[i] = 1;
pow2 = pow2 << 1;
before = 1;
} else {
res[i] = res[before] + 1;
before += 1;
}
}
return res;
}
}
Approach #2 DP + Least Significant Bit
class Solution {
public int[] countBits(int num) {
int[] ans = new int[num + 1];
for (int i = 1; i <= num; ++i)
ans[i] = ans[i >> 1] + (i & 1); // x / 2 is x >> 1 and x % 2 is x & 1
return ans;
}
}
Approach #3 Pop Count
x & (x - 1)的作用是将二进制表示中右边第一个1置0
class Solution {
public int[] countBits(int num) {
int[] res = new int[num + 1];
for (int i = 0; i <= num; i++) {
ans[i] = popcount(i);
}
return ans;
}
private int popcount(int x) {
int count;
for (count = 0; x != 0; count++) {
x &= x - 1; //zeroing out the least significant nonzero bit
}
return count;
}
}