338.Counting-Bits

338. Counting Bits

题目地址

https://leetcode.com/problems/counting-bits/

题目描述

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

Example 1:
Input: 2
Output: [0,1,1]

Example 2:
Input: 5
Output: [0,1,1,2,1,2]

Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

代码

Approach #1 DP + Most Significant Bit

根据题目的要求,时间和空间复杂度,明显是要动态规划的方法

得出推到公式:f(n) = 不大于f(n)的最大的2的次方 +f(k),k一定是在前面出现的,用数组记录,直接查询

,注意2的次方都是一个1,而且是最高位,

  • f(5) = 1 + f(1)

  • f(6) = 1 + f(2)

  • 直到 f(8) = 1

class Solution {
  public int[] countBits(int num) {
        int res = new int[num + 1];
    int pow2 = 1, before = 1;
    for (int i = 1; i <= num; i++) {
      if (i == pow2) {
        res[i] = 1;
        pow2 = pow2 << 1;
        before = 1;
      } else {
        res[i] = res[before] + 1;
        before += 1;
      }
    }

    return res;
  }
}

Approach #2 DP + Least Significant Bit

class Solution {
  public int[] countBits(int num) {
      int[] ans = new int[num + 1];
      for (int i = 1; i <= num; ++i)
        ans[i] = ans[i >> 1] + (i & 1); // x / 2 is x >> 1 and x % 2 is x & 1
      return ans;
  }
}

Approach #3 Pop Count

x & (x - 1)的作用是将二进制表示中右边第一个1置0

class Solution {
  public int[] countBits(int num) {
    int[] res = new int[num + 1];
    for (int i = 0; i <= num; i++) {
      ans[i] = popcount(i);
    }

    return ans;
  }

  private int popcount(int x) {
    int count;
    for (count = 0; x != 0; count++) {
      x &= x - 1; //zeroing out the least significant nonzero bit
    }
    return count;
  }
}

Last updated