Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
classSolution {publicint[] countBits(int num) {int res =newint[num +1];int pow2 =1, before =1;for (int i =1; i <= num; i++) {if (i == pow2) { res[i] =1; pow2 = pow2 <<1; before =1; } else { res[i] = res[before] +1; before +=1; } }return res; }}
Approach #2 DP + Least Significant Bit
classSolution {publicint[] countBits(int num) {int[] ans =newint[num +1];for (int i =1; i <= num; ++i) ans[i] = ans[i >>1] + (i &1); // x / 2 is x >> 1 and x % 2 is x & 1return ans; }}
Approach #3 Pop Count
x & (x - 1)的作用是将二进制表示中右边第一个1置0
classSolution {publicint[] countBits(int num) {int[] res =newint[num +1];for (int i =0; i <= num; i++) { ans[i] =popcount(i); }return ans; }privateintpopcount(int x) {int count;for (count =0; x !=0; count++) { x &= x -1; //zeroing out the least significant nonzero bit }return count; }}