329.Longest-Increasing-Path-in-a-Matrix

329. Longest Increasing Path in a Matrix

题目地址

https://leetcode.com/problems/longest-increasing-path-in-a-matrix/

题目描述

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:
Input: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]
] 
Output: 4 
Explanation: The longest increasing path is [1, 2, 6, 9].

Example 2:
Input: nums = 
[
  [3,4,5],
  [3,2,6],
  [2,2,1]
] 
Output: 4 
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

代码

Approach #1 DFS + Memoization

class Solution {
  private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
  private int m, n;
  public int longestIncreasingPath(int[][] matrix) {
        if (matrix.length == 0)        return 0;
    m = matrix.length;
    n = matrix[0].length;
    int[][] cache = new int[m][n];
    int ans = 0;
    for (int i = 0; i < m; i++) {
      for (int j = 0; j < n; j++) {
        ans = Math.max(ans, dfs(matrix, i, j, cache));
      }
    }
    return ans;
  }

  private int dfs(int[][] matrix, int i, int j, int[][] cache) {
    if (cache[i][j] != 0)        return cache[i][j];
    for (int[] d: dirs) {
      int x = i + d[0];
      int y = j + d[1];
      if (x >= 0 && x < m
         && y >= 0 y < n
         && matrix[x][y] > matrix[i][j]) {

        cache[i][j] = Math.max(cache[i][j], dfs(matrix, x, y, cache));
      }
    }

    return ++cache[i][j];
  }
}

Approach #3 Peeling Onion Confusion

// Topological Sort Based Solution
// An Alternative Solution
public class Solution {
    private static final int[][] dir = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
    private int m, n;
    public int longestIncreasingPath(int[][] grid) {
        int m = grid.length;
        if (m == 0) return 0;
        int n = grid[0].length;
        // padding the matrix with zero as boundaries
        // assuming all positive integer, otherwise use INT_MIN as boundaries
        int[][] matrix = new int[m + 2][n + 2];
        for (int i = 0; i < m; ++i)
            System.arraycopy(grid[i], 0, matrix[i + 1], 1, n);

        // calculate outdegrees
        int[][] outdegree = new int[m + 2][n + 2];
        for (int i = 1; i <= m; ++i)
            for (int j = 1; j <= n; ++j)
                for (int[] d: dir)
                    if (matrix[i][j] < matrix[i + d[0]][j + d[1]])
                        outdegree[i][j]++;

        // find leaves who have zero out degree as the initial level
        n += 2;
        m += 2;
        List<int[]> leaves = new ArrayList<>();
        for (int i = 1; i < m - 1; ++i)
            for (int j = 1; j < n - 1; ++j)
                if (outdegree[i][j] == 0) leaves.add(new int[]{i, j});

        // remove leaves level by level in topological order
        int height = 0;
        while (!leaves.isEmpty()) {
            height++;
            List<int[]> newLeaves = new ArrayList<>();
            for (int[] node: leaves) {
                for (int[] d: dir) {
                    int x = node[0] + d[0], y = node[1] + d[1];
                    if (matrix[node[0]][node[1]] > matrix[x][y])
                        if (--outdegree[x][y] == 0)
                            newLeaves.add(new int[]{x, y});
                }
            }
            leaves = newLeaves;
        }
        return height;
    }
}

Appraoch #3 TLE

// Naive DFS Solution
// Time Limit Exceeded
public class Solution {
  private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
  private int m, n;

  public int longestIncreasingPath(int[][] matrix) {
      if (matrix.length == 0) return 0;
      m = matrix.length;
      n = matrix[0].length;
      int ans = 0;
      for (int i = 0; i < m; ++i)
          for (int j = 0; j < n; ++j)
              ans = Math.max(ans, dfs(matrix, i, j));
      return ans;
  }

  private int dfs(int[][] matrix, int i, int j) {
      int ans = 0;
      for (int[] d : dirs) {
          int x = i + d[0], y = j + d[1];
          if (0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j])
              ans = Math.max(ans, dfs(matrix, x, y));
      }
      return ++ans;
  }
}

Last updated