329.Longest-Increasing-Path-in-a-Matrix
Last updated
Was this helpful?
Last updated
Was this helpful?
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
Input: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].
Example 2:
Input: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
class Solution {
private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
private int m, n;
public int longestIncreasingPath(int[][] matrix) {
if (matrix.length == 0) return 0;
m = matrix.length;
n = matrix[0].length;
int[][] cache = new int[m][n];
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
ans = Math.max(ans, dfs(matrix, i, j, cache));
}
}
return ans;
}
private int dfs(int[][] matrix, int i, int j, int[][] cache) {
if (cache[i][j] != 0) return cache[i][j];
for (int[] d: dirs) {
int x = i + d[0];
int y = j + d[1];
if (x >= 0 && x < m
&& y >= 0 y < n
&& matrix[x][y] > matrix[i][j]) {
cache[i][j] = Math.max(cache[i][j], dfs(matrix, x, y, cache));
}
}
return ++cache[i][j];
}
}
// Topological Sort Based Solution
// An Alternative Solution
public class Solution {
private static final int[][] dir = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
private int m, n;
public int longestIncreasingPath(int[][] grid) {
int m = grid.length;
if (m == 0) return 0;
int n = grid[0].length;
// padding the matrix with zero as boundaries
// assuming all positive integer, otherwise use INT_MIN as boundaries
int[][] matrix = new int[m + 2][n + 2];
for (int i = 0; i < m; ++i)
System.arraycopy(grid[i], 0, matrix[i + 1], 1, n);
// calculate outdegrees
int[][] outdegree = new int[m + 2][n + 2];
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= n; ++j)
for (int[] d: dir)
if (matrix[i][j] < matrix[i + d[0]][j + d[1]])
outdegree[i][j]++;
// find leaves who have zero out degree as the initial level
n += 2;
m += 2;
List<int[]> leaves = new ArrayList<>();
for (int i = 1; i < m - 1; ++i)
for (int j = 1; j < n - 1; ++j)
if (outdegree[i][j] == 0) leaves.add(new int[]{i, j});
// remove leaves level by level in topological order
int height = 0;
while (!leaves.isEmpty()) {
height++;
List<int[]> newLeaves = new ArrayList<>();
for (int[] node: leaves) {
for (int[] d: dir) {
int x = node[0] + d[0], y = node[1] + d[1];
if (matrix[node[0]][node[1]] > matrix[x][y])
if (--outdegree[x][y] == 0)
newLeaves.add(new int[]{x, y});
}
}
leaves = newLeaves;
}
return height;
}
}
// Naive DFS Solution
// Time Limit Exceeded
public class Solution {
private static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
private int m, n;
public int longestIncreasingPath(int[][] matrix) {
if (matrix.length == 0) return 0;
m = matrix.length;
n = matrix[0].length;
int ans = 0;
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
ans = Math.max(ans, dfs(matrix, i, j));
return ans;
}
private int dfs(int[][] matrix, int i, int j) {
int ans = 0;
for (int[] d : dirs) {
int x = i + d[0], y = j + d[1];
if (0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j])
ans = Math.max(ans, dfs(matrix, x, y));
}
return ++ans;
}
}