1155.Number-of-Dice-Rolls-With-Target-Sum

1155. Number of Dice Rolls With Target Sum

题目地址

https://leetcode.com/problems/number-of-dice-rolls-with-target-sum/

题目描述

You have d dice, and each die has f faces numbered 1, 2, ..., f.

Return the number of possible ways (out of fd total ways) modulo 10^9 + 7 to roll the dice so the sum of the face up numbers equals target.

Example 1:

Input: d = 1, f = 6, target = 3
Output: 1
Explanation: 
You throw one die with 6 faces.  There is only one way to get a sum of 3.
Example 2:

Input: d = 2, f = 6, target = 7
Output: 6
Explanation: 
You throw two dice, each with 6 faces.  There are 6 ways to get a sum of 7:
1+6, 2+5, 3+4, 4+3, 5+2, 6+1.
Example 3:

Input: d = 2, f = 5, target = 10
Output: 1
Explanation: 
You throw two dice, each with 5 faces.  There is only one way to get a sum of 10: 5+5.
Example 4:

Input: d = 1, f = 2, target = 3
Output: 0
Explanation: 
You throw one die with 2 faces.  There is no way to get a sum of 3.
Example 5:

Input: d = 30, f = 30, target = 500
Output: 222616187
Explanation: 
The answer must be returned modulo 10^9 + 7.

Constraints:

1 <= d, f <= 30
1 <= target <= 1000

代码

Approach #1

class Solution {
  int MOD = 1000_000_000 + 7;
  Map<String, Integer> memo = new HashMap<>();
  public int numRollsToTarget(int d, int f, int target) {
    if (d == 0 && target == 0) {
      return 1;
    }
    if (d > target || d * f < target) {
      return 0;
    }
    String str = d + " " + target;
    if (memo.conainsKey(str)) {
      return memo.get(str);
    }
    int res = 0;
    for (int i = 1; i <= f; i++) {
      if (i <= target) {
        res = (res + numRollsToTarget(d - 1, f, target - i)) % MOD;
      } else {
        break;
      }
    }
    memo.put(str, res);
    return res;
  }

}

Approach #2 Dynamic Bottom up

class Solution {
    public int numRolsToTarget(int d, int f, int target) {
        int MOD = (int)Math.pow(10, 9) + 7;
        long[][] dp = new long[d + 1][target + 1];
        dp[0][0] = 1;
        for (int i = 1; i <= d; i++) {
            for (int j = 0; j <= target; j++) {
                for (int k = 1; k <= f; k++) {
                    if (j >= k) {    // dp[i][0] == 0
                        dp[i][j] = (dp[i][j] + dp[i - 1][j - k]) % MOD;
                    } else {
                        break;
                    }
                }
            }
        }

        return (int)dp[d][target];
    }
}

Last updated