Given an array A of integers, return the length of the longest arithmetic subsequence in A.
Recall that a subsequence of A is a list A[i_1], A[i_2], ..., A[i_k] with 0 <= i_1 < i_2 < ... < i_k <= A.length - 1, and that a sequence B is arithmetic if B[i+1] - B[i] are all the same value (for 0 <= i < B.length - 1).
Example 1:
Input: [3,6,9,12]
Output: 4
Explanation:
The whole array is an arithmetic sequence with steps of length = 3.
Example 2:
Input: [9,4,7,2,10]
Output: 3
Explanation:
The longest arithmetic subsequence is [4,7,10].
Example 3:
Input: [20,1,15,3,10,5,8]
Output: 4
Explanation:
The longest arithmetic subsequence is [20,15,10,5].
Note:
2 <= A.length <= 2000
0 <= A[i] <= 10000
代码
Approach #1 DP
dp[diff][index] equals to the length of arithmetic sequence at index with difference diff.
classSolution {publicintlongestArithSeqLength(int[] A) {int res =2, n =A.length;HashMap<Integer,Integer>[] dp =newHashMap[n];for (int j =0; j <A.length; j++) { dp[j] =newHashMap();for (int i =0; i < j; i++) {int d =A[j] -A[i]; dp[j].put(d, dp[i].getOrDefault(d,1) +1); res =Math.max(res, dp[j].get(d)); } }return res; }}