Given an array of integers nums and a positive integer k, find whether it's possible to divide this array into sets of k consecutive numbers
Return True if its possible otherwise return False.
Example 1:
Input: nums = [1,2,3,3,4,4,5,6], k = 4
Output: true
Explanation: Array can be divided into [1,2,3,4] and [3,4,5,6].
Example 2:
Input: nums = [3,2,1,2,3,4,3,4,5,9,10,11], k = 3
Output: true
Explanation: Array can be divided into [1,2,3] , [2,3,4] , [3,4,5] and [9,10,11].
Example 3:
Input: nums = [3,3,2,2,1,1], k = 3
Output: true
Example 4:
Input: nums = [1,2,3,4], k = 3
Output: false
Explanation: Each array should be divided in subarrays of size 3.
Constraints:
1 <= nums.length <= 10^5
1 <= nums[i] <= 10^9
1 <= k <= nums.length
Exactly Same as 846. Hand of Straights
ไปฃ็
Approach #1
Count number of different cards to a map
Loop from the smallest card number.
Everytime we meet a new card i, we cut off i - i + k - 1 from the counter.
Time O(M log M + MK), where M is the number of different cards.
class Solution {
public boolean isPossibleDivide(int[] nums, int k) {
if (nums.length % k != 0) return false;
Map<Integer, Integer> map = new TreeMap();
for (int num: nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
for (int num: map.keySet()) {
int cnt = map.get(num);
if (cnt == 0) continue;
for (int i = num; i < k + num; i++) {
if (!map.containsKey(i) || map.get(i) <= 0) {
return false;
}
map.put(i, map.get(i) - cnt);
}
}
return true;
}
}
Approach #2
Count number of different cards to a map c
Cur represent current open straight groups.
In a deque start, we record the number of opened a straight group.
Loop from the smallest card number.
public boolean isPossibleDivide(int[] A, int k) {
Map<Integer, Integer> c = new TreeMap<>();
for (int i : A) c.put(i, c.getOrDefault(i, 0) + 1);
Queue<Integer> start = new LinkedList<>();
int last_checked = -1, opened = 0;
for (int i : c.keySet()) {
if (opened > 0 && i > last_checked + 1 || opened > c.get(i)) return false;
start.add(c.get(i) - opened);
last_checked = i; opened = c.get(i);
if (start.size() == k) opened -= start.remove();
}
return opened == 0;
}