Given a m * n matrix of ones and zeros, return how many square submatrices have all ones.
Example 1:
Input: matrix =
[
[0,1,1,1],
[1,1,1,1],
[0,1,1,1]
]
Output: 15
Explanation:
There are 10 squares of side 1.
There are 4 squares of side 2.
There is 1 square of side 3.
Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
Output: 7
Explanation:
There are 6 squares of side 1.
There is 1 square of side 2.
Total number of squares = 6 + 1 = 7.
Constraints:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
ไปฃ็
Approach #1 DP
Time: O(N^2) && Space: O(N^2)
classSolution {publicintcountSquares(int[][] matrix) {int n =matrix.length;int m = matrix[0].length;int[][] dp =newint[n][m];int count =0;for (int i =0; i < n; i++) if (matrix[i][0] ==1) dp[i][0] =1;for (int j =0; j < m; j++)if (matrix[0][j] ==1) dp[0][j] =1;for (int i =1; i < n; i++) {for (int j =1; j < m; j++) {if (matrix[i][j] ==1) {int min =1+Math.min(dp[i -1][j],Math.min(dp[i][j -1], dp[i -1][j -1])); dp[i][j] = min; } } }for (int i =0; i < n; i++) {for (int j =0; j < m; j++) { count += dp[i][j]; } }return count; }}