240.Search-a-2D-Matrix-II
240. Search a 2D Matrix II
题目地址
https://leetcode.com/problems/search-a-2d-matrix-ii/
题目描述
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
代码
Approach #1 Binary Search
Time complexity :O(log(n!))
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0) return false;
int shoterDim = Math.min(matrix.length, matrix[0].length);
for (int start = 0; start < shorterDim; start++) {
boolean verticalFound = binarySearch(matrix, target, start, true);
boolean horizontalFound = binarySearch(matrix, target, start, false);
if (verticalFound || horizontalFound) {
return true;
}
}
return false;
}
private boolean binarySearch(int[][] matrix, int target, int start, boolean vertical) {
int left = start;
int right = vertical ? matrix[0].length - 1: matrix.length - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (vertical) {
if (matrix[left][mid] < target) {
left = mid + 1;
} else if (matrix[left][mid] > target) {
right = mid - 1;
} else {
return true;
}
} else {
if (matrix[mid][left] < target) {
left = mid + 1;
} else if (matrix[mid][left] > target) {
right = mid - 1;
} else {
return true;
}
}
}
return false;
}
}
Approach #2 Divide and Conquer
class Solution {
private int[][] matrix;
private int target;
public boolean searchMatrix(int[][] mat, int target) {
if (matrix == null || matrix.length == 0) return false;
matrix = mat;
this.target = target;
return searchRec(0, 0, matrix[0].length - 1, matrix.length - 1);
}
private boolean searchRec(int left, int up, int right, int down) {
if (left > right || up > down) {
return false;
} else if (target < matrix[up][left] || target > matrix[down][right]) {
return false;
}
int mid = left + (right - left) / 2;
// Locate `row` such that matrix[row-1][mid] < target < matrix[row][mid]
int row = up;
while (row <= down && matrix[row][mid] <= target) {
if (matrix[row][mid] == target) return true;
row++;
}
return searchRec(left, row, mid - 1, down)
|| searchRec(mid + 1, up, right, row - 1);
}
}
Approach #3
Time complexity : O(n+m)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
// start our "pointer" in the bottom-left
int row = matrix.length - 1;
int col = 0;
while (row >= 0 && col < matrix[0].length) {
if (matrix[row][col] > target) {
row--;
} else if (matrix[row][col] < target) {
col++;
} else { // found it
return true;
}
}
return false;
}
}
Previous1292.Maximum-Side-Length-of-a-Square-with-Sum-Less-than-or-Equal-to-ThresholdNext296.Best-Meeting-Point
Last updated