Given a m x n matrix mat and an integer threshold. Return the maximum side-length of a square with a sum less than or equal to threshold or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1
Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6
Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184
Output: 2
Constraints:
1 <= m, n <= 300
m == mat.length
n == mat[i].length
0 <= mat[i][j] <= 10000
0 <= threshold <= 10^5
代码
Approach #1
Time: O(1) && Space: O(1)
class Solution {
public int maxSideLength(int[][] mat, int threshold) {
int m = mat.length;
int n = mat[0].length;
int[][] prefixSum = new int[m+1][n+1];
for (int i = 0; i <= m; i++) {
int sum = 0;
for (int j = 1; j <= n; j++) {
sum += mat[i-1][j-1];
prefixSum[i][j] = prefixSum[i-1][j] + sum;
}
}
for (int k = Math.min(m, n) - 1; k > 0; k--) {
for (int i = 1; i+k <= m; i++) {
for (int j = 1; j+k <= n; j++) {
if (prefixSum[i+k][j+k] - prefixSum[i-1][j+k]
- prefixSum[i+k][j-1] + prefixSum[i-1][j-1] <= threshold) {
return k+1;
}
}
}
}
return 0;
}
}