Given a m x n matrix mat and an integer threshold. Return the maximum side-length of a square with a sum less than or equal to threshold or return 0 if there is no such square.
Example 1:
Input: mat = [[1,1,3,2,4,3,2],[1,1,3,2,4,3,2],[1,1,3,2,4,3,2]], threshold = 4
Output: 2
Explanation: The maximum side length of square with sum less than 4 is 2 as shown.
Example 2:
Input: mat = [[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2],[2,2,2,2,2]], threshold = 1
Output: 0
Example 3:
Input: mat = [[1,1,1,1],[1,0,0,0],[1,0,0,0],[1,0,0,0]], threshold = 6
Output: 3
Example 4:
Input: mat = [[18,70],[61,1],[25,85],[14,40],[11,96],[97,96],[63,45]], threshold = 40184
Output: 2
Constraints:
1 <= m, n <= 300
m == mat.length
n == mat[i].length
0 <= mat[i][j] <= 10000
0 <= threshold <= 10^5
代码
Approach #1
Time: O(1) && Space: O(1)
classSolution {publicintmaxSideLength(int[][] mat,int threshold) {int m =mat.length;int n = mat[0].length;int[][] prefixSum =newint[m+1][n+1];for (int i =0; i <= m; i++) {int sum =0;for (int j =1; j <= n; j++) { sum += mat[i-1][j-1]; prefixSum[i][j] = prefixSum[i-1][j] + sum; } }for (int k =Math.min(m, n) -1; k >0; k--) {for (int i =1; i+k <= m; i++) {for (int j =1; j+k <= n; j++) {if (prefixSum[i+k][j+k] - prefixSum[i-1][j+k] - prefixSum[i+k][j-1] + prefixSum[i-1][j-1] <= threshold) {return k+1; } } } }return0; }}