In a deck of cards, each card has an integer written on it.
Return true if and only if you can choose X >= 2 such that it is possible to split the entire deck into 1 or more groups of cards, where:
Each group has exactly X cards.
All the cards in each group have the same integer.
Example 1:
Input: deck = [1,2,3,4,4,3,2,1]
Output: true
Explanation: Possible partition [1,1],[2,2],[3,3],[4,4].
Example 2:
Input: deck = [1,1,1,2,2,2,3,3]
Output: false´
Explanation: No possible partition.
Example 3:
Input: deck = [1]
Output: false
Explanation: No possible partition.
Example 4:
Input: deck = [1,1]
Output: true
Explanation: Possible partition [1,1].
Example 5:
Input: deck = [1,1,2,2,2,2]
Output: true
Explanation: Possible partition [1,1],[2,2],[2,2].
Constraints:
1 <= deck.length <= 10^4
0 <= deck[i] < 10^4
代码
Approach #1 Brute Force
Time: O(N^2 long log N*) && Space: O(N)
the number of divisors of N is bounded by O(N log log N)
classSolution {publicbooleanhasGroupsSizeX(int[] deck) {int N =deck.length;int[] count =newint[10000];for (int c: deck) count[c]++;List<Integer> values =newArrayList();for (int i =0; i <10000; i++) {if (count[i] >0)values.add(count[i]); } search:for (int x =2; x <= N; x++) {if (N % x ==0) {for (int v: values) {if (v % x !=0)continue search; }returntrue; } } }}
Approach #2 Greatest Common Divisor
Time Complexity: O(N log^2 N) & Space Complexity: O(N)
classSolution {publicbooleanhasGroupsSizeX(int[] deck) {int[] count =newint[10000];for (int c: deck) count[c]++;int g =-1;for (int i =0; i <10000; i++) {if (count[i] >0) {if (g ==-1) { g = count[i]; } else { g =gcd(g, count[i]); } } }return g >=2; }publicintgcd(int x,int y) {return x ==0? y :gcd(y % x, x); }}