Given a string S, consider all duplicated substrings: (contiguous) substrings of S that occur 2 or more times. (The occurrences may overlap.)
Return any duplicated substring that has the longest possible length. (If S does not have a duplicated substring, the answer is "".)
Example 1:
Input: "banana"
Output: "ana"
Example 2:
Input: "abcd"
Output: ""
Note:
2 <= S.length <= 10^5
S consists of lowercase English letters.
ไปฃ็
Approach 1: Binary Search + Rabin-Karp
Complexity Analysis
Time complexity : O(N_log_N). O(logN) for the binary search and O(N) for Rabin-Karp algorithm.
Space complexity : O(N) to keep the hashset.
classSolution {publicStringlongestDupSubstring(String S) {int n =S.length();int[] nums =newint[n];for (int i =0; i < n; i++) { nums[i] = (int)S.charAt(i) - (int)'a'; }// base value for the rolling hash functionint a =26;// modulus value for the rolling hash function to avoid overflowlong modulus = (long)Math.pow(2,32);int left =1, right = n;int L;while (left <= right) { L = left + (right - left) /2;if (search(L, a, modulus, n, nums)==-1) { right = L -1; } else { left = L +1; } }int start =search(left -1, a, modulus, n, nums);returnS.substring(start, start + left -1); }publicintsearch(int L,int a,long modulus,int n,int[] nums) {// compute the hash of string S[:L]long h =0;for (int i =0; i < L; i++) { h = (h * a + nums[i]) % modulus; }HashSet<Long> seen =newHashSet();seen.add(h);// const value to be used often : a**L % moduluslong aL =1;for (int i =1; i <= L; i++) { aL = (aL * a) % modulus; }for (int start =1; start < n - L +1; start++) {// compute rolling hash in O(1) time h = (h * a - nums[start -1] * aL % modulus + modulus) % modulus; h = (h + nums[start + L -1]) % modulus;if (seen.contains(h)) {return start; } else {seen.add(h); } }return-1; }}