963.Minimum-Area-Rectangle-II
963. Minimum Area Rectangle II
题目地址
https://leetcode.com/problems/minimum-area-rectangle-ii/
题目描述
Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the x and y axes.
If there isn't any rectangle, return 0.
Example 1:
Input: [[1,2],[2,1],[1,0],[0,1]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2.
Example 2:
Input: [[0,1],[2,1],[1,1],[1,0],[2,0]]
Output: 1.00000
Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1.
Example 3:
Input: [[0,3],[1,2],[3,1],[1,3],[2,1]]
Output: 0
Explanation: There is no possible rectangle to form from these points.
Example 4:
Input: [[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [2,1],[2,3],[3,3],[3,1], with an area of 2.
Note:
1 <= points.length <= 50
0 <= points[i][0] <= 40000
0 <= points[i][1] <= 40000
All points are distinct.
Answers within 10^-5 of the actual value will be accepted as correct.
代码
Approach #1 Iterate Triangles
Time: O(N^3) && Space: O(N)
Say the first 3 points are p1, p2, p3
, and that p2
and p3
are opposite corners of the final rectangle. The 4th point must be p4 = p2 + p3 - p1
(using vector notation) because p1, p2, p4, p3
must form a parallelogram, and p1 + (p2 - p1) + (p3 - p1) = p4
.
import java.awt.Point;
class Solution {
public double minAreaFreeRect(int[][] points) {
int N = points.length;
Point[] A = new Point[N];
Set<Point> pointSet = new HashSet();
for (int i = 0; i < N; i++) {
A[i] = new Point(points[i][0], points[i][1]);
pointSet.add(A[i]);
}
double ans = Double.MAX_VALUE;
for (int i = 0; i < N; i++) {
Point p1 = A[i];
for (int j = 0; j < N; j++) {
if (j != i) {
Point p2 = A[j];
for (int k = j+1; k < N; k++) {
if (k != i) {
Point p3 = A[k];
Point p4 = new Point(p2.x + p3.x - p1.x, p2.y + p3.y - p1.y);
if (pointSet.contains(p4)) {
int dot = ((p2.x - p1.x) * (p3.x - p1.x) + (p2.y - p1.y) * (p3.y - p1.y));
if (dot == 0) {
double area = p1.distance(p2) * p1.distance(p3);
if (area < ans) {
ans = area;
}
}
}
}
}
}
}
}
return ans < Double.MAX_VALUE ? ans : 0;
}
}
Approach #2 Iterate Centers
Time: O(N^2 log N) && Space: O(N)
import java.awt.Point;
class Solution {
public double minAreaFreeRect(int[][] points) {
int N = points.length;
Point[] A = new Point[N];
for (int i = 0; i < N; i++) {
A[i] = new Point(points[i][0], points[i][1]);
}
Map<Integer, Map<Point, List<Point>> seen = new HashMap();
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
// center is twice actual to keep integer precision
Point center = new Point(A[i].x + A[j].x, A[i].y + A[j].y);
int r2 = (A[i].x - A[j].x) * (A[i].x - A[j].x) + (A[i].y - A[j].y) * (A[i].y - A[j].y);
if (!seen.containsKey(r2)) {
seen.put(r2, new HashMap<Point, List<Point>>());
}
if (!seen.get(r2).contansKey(center)) {
seen.get(r2).put(center, new ArrayList<Point>());
}
seen.get(r2).get(center).add(A[i]);
}
}
double ans = Double.MAX_VALUE;
for (Map<Point, List<Point>>info; seen.values()) {
for (Point center: info.keySet()) {
List<Point> candidates = info.get(center);
int clen = candidates.size();
for (int i = 0; i < clen; i+) {
for (int j = i+1; j < clen; j++) {
// center is twice actual
Point P = candidates.get(i);
Point Q = candidates.get(j);
Point Q2 = new Point(center);
Q2.translate(-Q.x, -Q.y);
double area = P.distance(Q) * P.distance(Q2);
if (area < ans) {
ans = area;
}
}
}
}
}
return ans < Double.MAX_VALUE ? ans : 0;
}
}
Last updated