Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.
ไปฃ็
Approach #1 Iterative Preorder Traversal
Complexity Analysis
Time complexity: O(N) since one has to visit each node.
Space complexity: up to O(H) to keep the stack, where H is a tree height.
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */classSolution {publicintsumNumbers(TreeNode root) {int rootToLeaf =0, currNumber =0;Deque<Pair<TreeNode,Integer>> stack =newArrayDeque();stack.push(newPair(root,0));while (!stack.isEmpty()) {Pair<TreeNode,Integer> p =stack.pop(); root =p.getKey(); currNumber =p.getValue();if (root !=null) { currNumber = currNumber *10+root.val;if (root.left==null&&root.right==null) { rootToLeaf += currNumber; } else {stack.push(newPair(root.right, currNumber));stack.push(newPair(root.left, currNumber)); } } }return rootToleaf; }}