622.Design-Circular-Queue

622. Design Circular Queue

题目地址

https://leetcode.com/problems/design-circular-queue/

题目描述

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Your implementation should support following operations:

MyCircularQueue(k): Constructor, set the size of the queue to be k.
Front: Get the front item from the queue. If the queue is empty, return -1.
Rear: Get the last item from the queue. If the queue is empty, return -1.
enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
isEmpty(): Checks whether the circular queue is empty or not.
isFull(): Checks whether the circular queue is full or not.

Example:
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1);  // return true
circularQueue.enQueue(2);  // return true
circularQueue.enQueue(3);  // return true
circularQueue.enQueue(4);  // return false, the queue is full
circularQueue.Rear();  // return 3
circularQueue.isFull();  // return true
circularQueue.deQueue();  // return true
circularQueue.enQueue(4);  // return true
circularQueue.Rear();  // return 4

Note:
All values will be in the range of [0, 1000].
The number of operations will be in the range of [1, 1000].
Please do not use the built-in Queue library.

代码

Approach 1: Array

Insert: int index = (this.headIndex + this.count) % this.capacity;

Delete: this.headIndex = (this.headIndex + 1) % this.capacity;

Front: queue[this.headIndex];

Rear: (this.headIndex + this.count - 1) % this.capacity;

Complexity

  • Time complexity: O(1). All of the methods in our circular data structure is of constant time complexity.

  • Space Complexity: O(N). The overall space complexity of the data structure is linear, where N is the pre-assigned capacity of the queue. However, it is worth mentioning that the memory consumption of the data structure remains as its pre-assigned capacity during its entire life cycle.

class MyCircularQueue {

  private int[] queue;
  private int headIndex;
  private int count;
  private int capacity;

  /** Initialize your data structure here. Set the size of the queue to be k. */
  public MyCircularQueue(int k) {
    this.capacity = k;
    this.queue = new int[k];
    this.headIndex = 0;
    this.count = 0;
  }

  /** Insert an element into the circular queue. Return true if the operation is successful. */
  public boolean enQueue(int value) {
    if (this.count == this.capacity) return false;
    int index = (this.headIndex + this.count) % this.capacity;
    this.queue[index] = value;
    this.count += 1;
    return true;
  }

  /** Delete an element from the circular queue. Return true if the operation is successful. */
  public boolean deQueue() {
    if (this.count == 0)    return false;
    this.headIndex = (this.headIndex + 1) % this.capacity;
    this.count -= 1;
    return true;
  }

  /** Get the front item from the queue. */
  public int Front() {
    if (this.count == 0) return -1;
    return this.queue[this.headIndex];
  }

  /** Get the last item from the queue. */
  public int Rear() {
    if (this.count == 0) return -1;
    int tailIndex = (this.headIndex + this.count - 1) % this.capacity;
    return this.queue[tailIndex];
  }

  /** Checks whether the circular queue is empty or not. */
  public boolean isEmpty() {
    return (this.count == 0);
  }

  /** Checks whether the circular queue is full or not. */
  public boolean isFull() {
      return (this.count == this.capacity);
  }
}

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * MyCircularQueue obj = new MyCircularQueue(k);
 * boolean param_1 = obj.enQueue(value);
 * boolean param_2 = obj.deQueue();
 * int param_3 = obj.Front();
 * int param_4 = obj.Rear();
 * boolean param_5 = obj.isEmpty();
 * boolean param_6 = obj.isFull();
 */

Approach #2 Singly-Linked List

Two nodes: Head and tail

class Node {
  public int value;
  public Node nextNode;

  public Node(int value) {
    this.value = value;
    this.nextNode = null;
  }
}

class MyCircularQueue {

  private Node head, tail;
  private int count;
  private int capacity;

  /** Initialize your data structure here. Set the size of the queue to be k. */
  public MyCircularQueue(int k) {
    this.capacity = k;
  }

  /** Insert an element into the circular queue. Return true if the operation is successful. */
  public boolean enQueue(int value) {
    if (this.count == this.capacity)
      return false;

    Node newNode = new Node(value);
    if (this.count == 0) {
      head = tail = newNode;
    } else {
      tail.nextNode = newNode;
      tail = newNode;
    }
    this.count += 1;
    return true;
  }

  /** Delete an element from the circular queue. Return true if the operation is successful. */
  public boolean deQueue() {
    if (this.count == 0)
      return false;
    this.head = this.head.nextNode;
    this.count -= 1;
    return true;
  }

  /** Get the front item from the queue. */
  public int Front() {
    if (this.count == 0)
      return -1;
    else
      return this.head.value;
  }

  /** Get the last item from the queue. */
  public int Rear() {
    if (this.count == 0)
      return -1;
    else
      return this.tail.value;
  }

  /** Checks whether the circular queue is empty or not. */
  public boolean isEmpty() {
    return (this.count == 0);
  }

  /** Checks whether the circular queue is full or not. */
  public boolean isFull() {
    return (this.count == this.capacity);
  }
}

Last updated