Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".
One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.
Your implementation should support following operations:
MyCircularQueue(k): Constructor, set the size of the queue to be k.
Front: Get the front item from the queue. If the queue is empty, return -1.
Rear: Get the last item from the queue. If the queue is empty, return -1.
enQueue(value): Insert an element into the circular queue. Return true if the operation is successful.
deQueue(): Delete an element from the circular queue. Return true if the operation is successful.
isEmpty(): Checks whether the circular queue is empty or not.
isFull(): Checks whether the circular queue is full or not.
Example:
MyCircularQueue circularQueue = new MyCircularQueue(3); // set the size to be 3
circularQueue.enQueue(1); // return true
circularQueue.enQueue(2); // return true
circularQueue.enQueue(3); // return true
circularQueue.enQueue(4); // return false, the queue is full
circularQueue.Rear(); // return 3
circularQueue.isFull(); // return true
circularQueue.deQueue(); // return true
circularQueue.enQueue(4); // return true
circularQueue.Rear(); // return 4
Note:
All values will be in the range of [0, 1000].
The number of operations will be in the range of [1, 1000].
Please do not use the built-in Queue library.
代码
Approach 1: Array
Insert: int index = (this.headIndex + this.count) % this.capacity;
Time complexity: O(1). All of the methods in our circular data structure is of constant time complexity.
Space Complexity: O(N). The overall space complexity of the data structure is linear, where N is the pre-assigned capacity of the queue. However, it is worth mentioning that the memory consumption of the data structure remains as its pre-assigned capacity during its entire life cycle.
classMyCircularQueue {privateint[] queue;privateint headIndex;privateint count;privateint capacity; /** Initialize your data structure here. Set the size of the queue to be k. */publicMyCircularQueue(int k) {this.capacity= k;this.queue=newint[k];this.headIndex=0;this.count=0; } /** Insert an element into the circular queue. Return true if the operation is successful. */publicbooleanenQueue(int value) {if (this.count==this.capacity) returnfalse;int index = (this.headIndex+this.count) %this.capacity;this.queue[index] = value;this.count+=1;returntrue; } /** Delete an element from the circular queue. Return true if the operation is successful. */publicbooleandeQueue() {if (this.count==0) returnfalse;this.headIndex= (this.headIndex+1) %this.capacity;this.count-=1;returntrue; } /** Get the front item from the queue. */publicintFront() {if (this.count==0) return-1;returnthis.queue[this.headIndex]; } /** Get the last item from the queue. */publicintRear() {if (this.count==0) return-1;int tailIndex = (this.headIndex+this.count-1) %this.capacity;returnthis.queue[tailIndex]; } /** Checks whether the circular queue is empty or not. */publicbooleanisEmpty() {return (this.count==0); } /** Checks whether the circular queue is full or not. */publicbooleanisFull() {return (this.count==this.capacity); }}/** * Your MyCircularQueue object will be instantiated and called as such: * MyCircularQueue obj = new MyCircularQueue(k); * boolean param_1 = obj.enQueue(value); * boolean param_2 = obj.deQueue(); * int param_3 = obj.Front(); * int param_4 = obj.Rear(); * boolean param_5 = obj.isEmpty(); * boolean param_6 = obj.isFull(); */
Approach #2 Singly-Linked List
Two nodes: Head and tail
classNode {publicint value;publicNode nextNode;publicNode(int value) {this.value= value;this.nextNode=null; }}classMyCircularQueue {privateNode head, tail;privateint count;privateint capacity; /** Initialize your data structure here. Set the size of the queue to be k. */publicMyCircularQueue(int k) {this.capacity= k; } /** Insert an element into the circular queue. Return true if the operation is successful. */publicbooleanenQueue(int value) {if (this.count==this.capacity)returnfalse;Node newNode =newNode(value);if (this.count==0) { head = tail = newNode; } else {tail.nextNode= newNode; tail = newNode; }this.count+=1;returntrue; } /** Delete an element from the circular queue. Return true if the operation is successful. */publicbooleandeQueue() {if (this.count==0)returnfalse;this.head=this.head.nextNode;this.count-=1;returntrue; } /** Get the front item from the queue. */publicintFront() {if (this.count==0)return-1;elsereturnthis.head.value; } /** Get the last item from the queue. */publicintRear() {if (this.count==0)return-1;elsereturnthis.tail.value; } /** Checks whether the circular queue is empty or not. */publicbooleanisEmpty() {return (this.count==0); } /** Checks whether the circular queue is full or not. */publicbooleanisFull() {return (this.count==this.capacity); }}