Write an iterator that iterates through a run-length encoded sequence.
The iterator is initialized by RLEIterator(int[] A), where A is a run-length encoding of some sequence. More specifically, for all even i, A[i] tells us the number of times that the non-negative integer value A[i+1] is repeated in the sequence.
The iterator supports one function: next(int n), which exhausts the next n elements (n >= 1) and returns the last element exhausted in this way. If there is no element left to exhaust, next returns -1 instead.
For example, we start with A = [3,8,0,9,2,5], which is a run-length encoding of the sequence [8,8,8,5,5]. This is because the sequence can be read as "three eights, zero nines, two fives".
Example 1:
Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]]
Output: [null,8,8,5,-1]
Explanation:
RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]).
This maps to the sequence [8,8,8,5,5].
RLEIterator.next is then called 4 times:
.next(2) exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5].
.next(1) exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5].
.next(1) exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5].
.next(2) exhausts 2 terms, returning -1. This is because the first term exhausted was 5,
but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Note:
0 <= A.length <= 1000
A.length is an even integer.
0 <= A[i] <= 10^9
There are at most 1000 calls to RLEIterator.next(int n) per test case.
Each call to RLEIterator.next(int n) will have 1 <= n <= 10^9.
ไปฃ็
Approach #1 Store Exhausted Position and Quantity
Time: O(N+Q) && Space: O(N)
We can store an index i and quantity q which represents that q elements of A[i] (repeated A[i+1] times) are exhausted.
classRLEIterator {int[] A;int i, q;publicRLEIterator(int[] A) {this.A= A; i = q =0; }publicintnext(int n) {while (i <A.length) {if (q + n >A[i]) { n = n - (A[i] - q); q =0; i +=2; } else { q += n;returnA[i+1]; } }return-1; }}/** * Your RLEIterator object will be instantiated and called as such: * RLEIterator obj = new RLEIterator(A); * int param_1 = obj.next(n); */